Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 100: 1-16, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503384

RESUMO

Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/terapia , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
2.
Chin J Integr Med ; 30(1): 75-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340205

RESUMO

Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Suplementos Nutricionais , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico
3.
Semin Cancer Biol ; 98: 31-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123029

RESUMO

Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , DNA
4.
Appl Biochem Biotechnol ; 195(12): 7338-7378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37000353

RESUMO

The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.


Assuntos
Antineoplásicos , Apoptose , Autofagia , Limoninas , Neoplasias Pulmonares , Metformina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Humanos , Células A549 , Apoptose/efeitos dos fármacos , Metformina/farmacologia , Limoninas/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Linhagem Celular , Citotoxinas/farmacologia , Sinergismo Farmacológico , Espécies Reativas de Oxigênio/metabolismo , Combinação de Medicamentos , Dano ao DNA/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo
5.
Arch Biochem Biophys ; 736: 109537, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738981

RESUMO

Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.


Assuntos
Proteínas de Choque Térmico HSP27 , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Apoptose
6.
Mol Biol Rep ; 50(3): 2701-2711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538171

RESUMO

By the end of 2019, COVID-19 was reported in Wuhan city of China, and through human-human transmission, this virus spread worldwide and became a pandemic. Initial symptoms of the disease include fever, cough, loss of smell, taste, and shortness of breath, but a decrease in the oxygen levels in the body leads, and pneumonia may ultimately lead to the patient's death. However, the symptoms vary from patient to patient. To understand COVID-19 disease pathogenesis, researchers have tried to understand the cellular pathways that could be targeted to suppress viral replication. Thus, this article reviews the markers that could be targeted to inhibit viral replication by inhibiting the translational initiation complex/regulatory kinases and upregulating host autophagic flux that may lead to a reduction in the viral load. The article also highlights that mTOR inhibitors may act as potential inhibitors of viral replication. mTOR inhibitors such as metformin may inhibit the interaction of SARS-CoV-2 Nsp's and ORFs with mTORC1, LARP1, and 4E-BP. They may also increase autophagic flux by decreasing protein degradation via inhibition of Skp2, further promoting viral cell death. These events result in cell cycle arrest at G1 by p27, ultimately causing cell death.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inibidores de MTOR , Proteínas Adaptadoras de Transdução de Sinal , Replicação Viral , Serina-Treonina Quinases TOR
7.
Life Sci ; 306: 120852, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917940

RESUMO

Cells are exposed to several environmental or chemical stressors that may cause DNA damage. DNA damage alters the normal functioning of the cell and contributes to several diseases, including cancer. Cells either induce DNA damage repair pathways or programmed cell death pathways to prevent disease formation depending on the severity of the stress and the damage caused. The DNA repair mechanisms are crucial to maintaining genome stability. During this adaptive response, the heat shock proteins (HSPs) are the key players. HSPs are overexpressed during genotoxic stress, but the role of different molecular players in the interaction between HSPs and DNA repair proteins is still poorly understood. As DNA damage promotes genomic instability and proteotoxic stress, modulating the protein quality control systems like the HSPs network could be a promising strategy for targeting disease pathologies associated with genomic instability, such as cancer. Hence, this review highlights the role of HSPs in DNA repair pathways. Further, the review also provides an outlook on the role of genomic instability and protein homeostasis in cancer, which is crucial to understanding the mechanisms behind its survival and developing novel targeted therapies.


Assuntos
Neoplasias , Proteostase , Dano ao DNA/genética , Reparo do DNA , Instabilidade Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteostase/genética
8.
Front Oncol ; 12: 852424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359388

RESUMO

Cancer formation is a highly regulated and complex process, largely dependent on its microenvironment. This complexity highlights the need for developing novel target-based therapies depending on cancer phenotype and genotype. Autophagy, a catabolic process, removes damaged and defective cellular materials through lysosomes. It is activated in response to stress conditions such as nutrient deprivation, hypoxia, and oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that are multifaceted molecules that drive several pathophysiological conditions, including cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but promoting tumor progression during advanced stages. Mounting evidence has suggested an intricate crosstalk between autophagy and ROS where they can either suppress cancer formation or promote disease etiology. This review highlights the regulatory roles of autophagy and ROS from tumor induction to metastasis. We also discuss the therapeutic strategies that have been devised so far to combat cancer. Based on the review, we finally present some gap areas that could be targeted and may provide a basis for cancer suppression.

9.
Life Sci ; 256: 118000, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585246

RESUMO

AIMS: Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS: A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS: Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE: Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Limoninas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Limoninas/administração & dosagem , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31508802

RESUMO

Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.


Assuntos
Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/genética , Neoplasias/genética , Animais , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Agregados Proteicos
11.
Anticancer Agents Med Chem ; 19(2): 184-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30370860

RESUMO

BACKGROUND: Despite a number of measures having been taken for cancer management, it is still the second leading cause of death worldwide. p53 is the protein principally being targeted for cancer treatment. Targeting p53 localization may be an effective strategy in chemotherapy as it controls major cell death pathways based on its cellular localization. Anthraquinones are bioactive compounds widely being considered as potential anticancer agents but their mechanism of action is yet to be explored. It has been shown that the number and position of hydroxyl groups within the different anthraquinones like Emodin and Chrysophanol reflects the number of intermolecular hydrogen bonds which affect its activity. Emodin contains an additional OH group at C-3, in comparison to Chrysophanol and may differentially regulate different cell death pathways in cancer cell. OBJECTIVE: The present study was aimed to investigate the effect of two anthraquinones Emodin and Chrysophanol on induction of different cell death pathways in human lung cancer cells (A549 cell line) and whether single OH group difference between these compounds differentially regulate cell death pathways. METHODS: The cytotoxic effect of Emodin and Chrysophanol was determined by the MTT assay. The expression of autophagy and apoptosis marker genes at mRNA and protein level after treatment was checked by the RT-PCR and Western Blot, respectively. For cellular localization of p53 after treatment, we performed immunofluorescence microscopy. RESULTS: We observed that both compounds depicted a dose-dependent cytotoxic response in A549 cells which was in concurrence with the markers associated with oxidative stress such as an increase in ROS generation, decrease in MMP and DNA damage. We also observed that both compounds up-regulated the p53 expression where Emodin causes nuclear p53 localization, which leads to down-regulation in mTOR expression and induces autophagy while Chrysophanol inhibits p53 translocation into nucleus, up-regulates mTOR expression and inhibits autophagy. CONCLUSION: From this study, it may be concluded that the structural difference of single hydroxyl group may switch the mechanism from one pathway to another which could be useful in the future to improve anticancer treatment and help in the development of new selective therapies.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Emodina/farmacologia , Hidróxidos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteína Supressora de Tumor p53/antagonistas & inibidores , Células A549 , Antraquinonas/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Emodina/química , Humanos , Hidróxidos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
12.
Int J Biochem Cell Biol ; 96: 90-95, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355754

RESUMO

Loss of p53 function via mutation is a very common cause of human cancers. Recent studies have provided evidence on presence of self aggregated p53 in cancer cells leading to its altered functions towards cause of cancer. The general notion has been that mutated p53 exposes adhesive sites that promote self aggregation, however a complete mechanistic understanding to this has been lacking. We embarked on the present study towards exploring the differential aggregation pattern in cells expressing mutated TP53 (HaCaT keratinocytes) vs those expressing the wild type copy of the p53 protein (A549 lung cancer cell line). The studies led us to interesting observation that formation of p53 protein aggregates is not always associated with TP53 mutation. The A549 lung cancer cells, having wild type TP53, showed the appearance of p53 protein aggregates, while no protein aggregates were observed in normal HaCaT keratinocytes carrying mutant TP53. We went on to study the effect of blocking protein aggregation by emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) and figured that inhibiting p53 protein aggregation can elevate the level of autophagy in A549 lung cancer cell line while there is no significant effect on autophagy in normal non-cancerous HaCaT cells. Moreover, ATG5 was found to be coaggregated with p53 aggregates which dissociated after emodin treatment, indicating further induction of autophagy in A549 cells only. From these observations, we conclude that the increased level of autophagy might be the mechanism for the removal of p53 protein aggregates which restores p53 function in A549 cells after emodin treatment .This encourages further studies towards deciphering related mechanistic aspects vis-à-vis potential therapeutic strategies against cancer.


Assuntos
Autofagia/efeitos dos fármacos , Emodina/farmacologia , Neoplasias Pulmonares/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/genética
13.
Front Biosci (Elite Ed) ; 9(1): 54-66, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814589

RESUMO

GRP78 (glucose regulated protein 78) is a major Endoplasmic Reticulum (ER) chaperone that plays a pivotal role in normal ER functioning. Its increased expression also works as an indicator of ER stress. Its anti-apoptotic and pro-autophagic activity makes it an intriguing target to study the relationship between GRP78 and p53, which is also a major regulator of apoptosis and autophagy. Here, we studied the effect of Rotenone and Parathion on human lung cancer cells (A549 cell line) specifically with respect to ER stress and its association with different cell death pathways. In our study, we observed that both compounds increase reactive oxygen species (ROS) generation, down regulate mitochondrial membrane potential (MMP) and affect DNA integrity. Our results indicate that Parathion causes ER stress, up regulates the expression of GRP78, leads to nuclear localization of p53 and induces autophagy while Rotenone down regulates GRP78, causes cytoplasmic localization of p53 and inhibits autophagy. Therefore, it may be concluded that GRP78 affects p53 localization which in turn regulates autophagy.


Assuntos
Autofagia/fisiologia , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Paration/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...